


NONLINEAR ROTORDYNAMICS 

ANALYSIS 

CONTRACT NAS8-36475 

f o r  the period 
1 June 1985 - 15 June 1986 

Performed fo r  
NASA Marshall Space Flight Center 

Performed by 

Department of Computer Science and Engineering 
Auburn University 

Auburn University, AL 36849 

Principal Investigator: W i l l i a m  B. Day 

Authors : W i l l i a m  B . Day 
Richard A. Zalik 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

ABSTRACT 

This Report examines three analytic consequences of the nonlinear 
Jeffcott equations. 
directed toward understanding the excessive vibrations recorded in the 
LOX pump of the SSME during hot firing ground testing. 

equations which delimit the two cases of the numerical solution as a 
circle or an annulus. 

The second task examines the mathematical generalization to 

The primary application of these analyses is 

The first task is to provide bounds on the coefficients of the 

multiple forcing functions, which includes the special problems of mass 
imbalance, side force, rubbing, and combinations of these forces. 

is discussed and related to the corresponding linear problem. 
Finally, stability and boundedness of the steady-state solutions 
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1.  INTRODUCTION 

Beginning with Je f f co t t ' s  description of a ro ta t ing  s h a f t ' s  na tura l  
frequency of l a t e r a l  vibrat ion [ 6 I , investigators have sought mathematical 
explanations of observed vibrations i n  ro ta t ing  machinery. 
model of the motion of the  shaf t ' s  center of mass, only the frequency a t  
which the shaf t  i s  being driven appears i n  the steady-state solution except 
i n  one special  case where the natural frequency is  exactly equal t o  the 
square root of the r a t i o  of the cross-stiffness and the damping. Otherwise, 
the solution from the homogenous equation, the t ranscient  portion of the 
solution, e i the r  grows without bound, the  case of an unbounded solution, 
or  it decays t o  zero, the case of a bounded solution. 

One of the e a r l i e s t  investigators of rotordynamics which included 
deadband was Yomamoto [8] .  In the ro tor ,  deadband refers t o  the load 
ca r r i e r s  ( b a l l  bearings) and physically describes the clearance between 
the outer race of the bearing and the  support housing. Yomamoto's work 
assumes tha t  the  response is  simply a perturbation of the forcing function. 
This is  tantamount t o  assuming that one always has the solut ion graphically 
depicted as a c i r c l e .  
Kutta Fourth Order technique refute this  assumption. 
r e su l t s  by Childs [ I  , 21 and Gupta e t  a l .  
solutions by Control Dynamics Company [3]  have provided insight  i n  under- 
standing the  nonlinear r o t o r ' s  motion. 

I n  the  l i nea r  

Straight-forward numerical solutions using a Runge- 
Both empirical 

[ 5 ]  as w e l l  a s  numerical 

It was shown e a r l i e r  [ 4 ]  f o r  the nonlinear J e f f co t t  equation, in 
which the  nonlinearity i n  induced by deadband and appears i n  the  equations 
in the  form ( I  - 6 / r )w ,  t ha t  the equation possesses an analyt ic  f l e x i b i l i t y  
which provides a capabi l i ty  of  producing a contribution t o  t h e  steady-state 
solution whenever the r a t i o  of the cross-stiffness t o  the damping lies 
between the values of the square root of the seal s t i f f n e s s  and the  square 
root of the sum of the  seal s t i f fness  and the bearing s t i f fnes s  ( the  
na tura l  frequency). 

This Report extends the ear l ie r  work i n  several  direct ions.  F i r s t ,  

it i s  necessary t o  generalize mathematically the Jef fco t t  equations t o  
allow multiple forcing functions and t o  examine the implications of these 
extensions t o  the asymptotic expansions one uses i n  approximating the  

1 
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solution of the equations. 
analytic derivations and the  necessary extensions for  asymptotic 
expansions. 
imbalance, side force, rubbing and any combination of these forcing 
functions are a l l  special  cases of the multiple forcing function problem. 

It was shown in [ 4 ]  t ha t  the  nonlinear frequency, t ha t  frequency 
which a r i ses  when the homogeneous equation provides a par t  of the  t o t a l  
steady-state solution, can be absent o r  present depending on the  magni- 
tude of the forcing function. 
theorems which provide inequalit ies on the coeff ic ients  of the differen- 
t i a l  equations and the  magnitude of the forcing function. 
inequal i t ies  are  useful in deciding a p r i o r i  whether a given set of 
equation parameters w i l l  produce a steady-state response which depends 
solely on the forcing function (graphically, a c i r c l e )  o r  a response 
which also includes a nonlinear frequency term (graphically, an annulus). 
Several numerical examples along with frequency-response curves are  then 
studied in l i gh t  of these theorems. 

Section 4 begins the numerical investigation of t he  multiple forcing 
functions problem vis-a-vis the asymptotic resu l t s .  In t h i s  Section the 

driving forces a re  s ide force and mass imbalance, the  most intensely 
studied special  case. 
of  Control Dynamics Company [31 are provided. 
more general numerical examples. 

with a novel mathematical representation of the  Je f f co t t  equations are 
presented. 
nonlinear solution's behavior with tha t  of the corresponding linear 
problem (6 = 0 ) .  
the  conjecture tha t  the  nonlinear solution's boundedness is  predicted 
by tha t  of the linear solution. 

Section 2 contains a summary of e a r l i e r  

It i s  also shown i n  Section 2 tha t  the cases of mass 

Section 3 of t h i s  Report contains two 

These 

Explanations fo r  r e su l t s  from the Final Report 
Section 5 then considers 

Section 6 deals with boundedness and s t a b i l i t y .  Two theorems along 

New boundedness resu l t s  are a lso studied by comparing the 

Final ly  numerical r e su l t s  are  included t o  i l l u s t r a t e  

Section 7 contains the conclusion of t h i s  Report and opens a can 
of worms by observing tha t  heretofore the i n i t i a l  conditions have been 
ignored as  a v i t a l  fac tor  in determining the analyt ic  solution. 

2 



2. SUMMARY OF THE SINGLE FORCING FUNCTION PROBLEM AND EXTENSION TO 

MULTIPLE FORCING FUNCTIONS 

This section contains four subsections which include a summary of  the 
analyt ic  approximations of the Jeffcot t  equations with a s ingle  forcing 
function, as presented i n  [ 4 ] ,  and new extensions t o  the Jef fco t t  equations 
with multiple forcing functions. Subsection 2.1 presents the dimensional 
J e f f co t t  equations and the transformations leading t o  the  nondimensional 
form and the complex form of these equations. Subsection 2.2 i s  concerned 
with the  generalization of the complex Jef fco t t  equation and with the 
ident i f ica t ion  of the  special  cases of mass imbalance, s ide  force, rubbing 
and combinations of these three forces. 
from [ 4 1  of the arguments leading t o  the discovery of the  nonlinear 
na tura l  frequency. Subsection 2.4 discusses the application of the 
method of multiple scales  t o  approximate ana ly t ica l ly  the solution of the 
Je f f co t t  equations when they are  forced by a s ing le  o r  by multiple forcing 
functions. 
illuminates the analyt ic  derivations. 

Subsection 2.3 i s  a reproduction 

This subsection concludes with a typ ica l  example which 

2.1 NONDIMENSIONALIZATION 

along the  
m =  

- 
cs - 
Ks - 
Qs - 

% =  

- 
- 

u =  

The nonlinear Je f fco t t  equations which describe the  displacement of 
the ro tor  center from i t s  equilibrium posi t ion i n  the  i n e r t i a l ,  Cartesian 
coordinate system (y,  a )  (each i n  meters) and which include bearing forces 
which hold the ro tor  in posit ion,  a re  these: 

y + ( C s / m ) i  + ( l / m )  [Ks + % (1 - Wr)] y + (Qs/m)z = w2cosut  
+ ( C s / m ) i  - (Qs/m)y + ( l / m )  [Ks + % (1 - 6 / r ) l z  = uw2sinut 

when r = -26; otherwise, I[B = 0. Here the  shaf t  of the ro tor  l ies 

( 1  ) 
( 2  ) 

x-axis and 
mass (kg.) 
seal damping (kg./s.) 
seal s t i f fnes s  ( k g . / ~ . ~ )  
cross-coupling s t i f fness  of s e a l  (kg./s. 2 ,  

displacement of the  shaft center of mass from the geometric 
center (m. ) 
bearing st i f  fnes s ( kg . /s . 

3 



6 = clearance o r  deadband between housing and bearing (m.) 
p = coeff ic ient  of f r i c t i o n  between housing and bearing (none). 
w = angular velocity of the shaf t  ( rad. /s .  ) 

is  nondimensional and typical ly  small, one may regard it as zero Since 
without affect ing the qua l i ta t ive  r e su l t s .  
be put in nondimensional form using a displacement g and a frequency 
One p a i r  of candidates fo r  g and CI would be g = 6 ,  the deadband s i ze ,  and 
o2 = w2 = Ks + %, the natural  frequency of the corresponding l i nea r  
problem ( 6  = 0 ) .  

l e s s  equations are  these: 

Equations ( 1 ) and ( 2 ) can 
o. 

0 
Thus, using Y = y/g, Z = z/g, and r = at, the  dimension- 

Yrr + CY' + [A  + k(l - AD] Y + BZ = E$2cos$~ 
Zr r  + C Z '  - BY + [ A  + k( l  - A/R)] Z = E$2sin$~ 

( 3 )  
( 4  1 

where prime denotes different ia t ion with respect t o  T and C = Cs/m/o, 

A = Ks/m/02, k = $/m/02, B = QS/m/02, A = B/g, R = r/g, E = u/g, and 

Equations ( 3  ) - ( 4 ) can be reduced t o  the following single equation by 
defining W = Y + i Z ;  

c$ = d o .  

Wrr + CW' + {A + k (1 - A / l W l )  - iB)W = E$'exp(i$T). ( 5 )  

2.2 GENERALIZATIONS 

A generalization of equation ( 5  ) is  

Wr1 + CW' + AW + K(l - A / l W l ) W  = C Fn($n) exp(i$nr) 
L 

n=l 
( 6 )  

where C,  A, and K are complex constants and where the nonlinear left-hand 
s ide  of equation ( 6  ) i s  being driven on the right-hand s ide by multiple 
forces. The following are  special  cases of physical i n t e re s t :  

a.  Forcing function is  mass imbalance. 
equation ( 5  ) and is  obtained from equation ( 6  ) with L = 1 and 

Forcing function i s  s ide force.  
the Jef fco t t  equations ( 1  ) - ( 2  ) as a constant replacement f o r  
the mass imbalance. 

This i s  the case derived in 

F i ( $ i )  = E$:. 
b. This force may be introduced in to  

I n  such cases, equation ( 5 ) becomes 
Wrr + CW' + {A + k(1 - A / I W l ) -  i B )  W = constant. 

Thus, a s ide force i s  the spec ia l  case of equation ( 6  
L = 1, F1($1) = constant, and 

with 

= 0. 

4 



c. Forcing function i s  rubbing. Contact between a ro tor  and i ts  
housing produces a Coulomb damping force. 
modify the  or ig ina l  Jeffcot t  equations by the  addition of the 
terms : 

This force would 

respectively, t o  the right-hand s ides  of equations ( 1 ) - ( 2 ) .  
Here, G = constant = s t a to r  o f f se t  i n  the y - direct ion,  K = 

s t a t o r  s t i f fnes s  and 1.1 = coeff ic ient  of f r i c t i o n ,  which may not 
be small. 

s t  

As before these forces would be included only when 
r = (y2  + z 2 3  ) '6. On replacing y - G by y, equation ( 5 ) (and 

correspondingly i t s  equivalent forms) again occurs but with 
these modifications: 

1 .  
2 .  the  forcing function exp(i@-r) i s  replaced by 

Thus, rubbing is  equivalent t o  having two forcing functions i n  
equation ( 6  ) where L = 2, F1(+1) = E$:, F($2) = constant, and 
4 2  = 0. 

d. Any combination of mass imbalance, s ide force,  and rubbing. 
I n i t i a l l y ,  a t ten t ion  i s  res t r ic ted  t o  equation ( 5 ) ; i .e . ,  equation 

i [ - B ]  i s  replaced by i [ - B  + p(K /g2)(1 - A / R ) ]  

E$2exp(i4.r) + (-ai /g2) ( G / 6 ) .  

st 

( 6 ) with L = 1.  
more complicated cases of L '1 can be solved as a superposition of the 
individual responses which are  found using equation ( 5 ) . 

It w i l l  be seen l a t e r  t ha t  i n  a f irst  approximation, the 

2.3 NONLINEAR NATURAL FREQUENCY 

Consider the dimensional, homogeneous ( E  = 0) equation corresponding 
t o  equation ( 5 ) :  

w + (Cs/m); + (l/rn) {[Ks + % (1 - 6 / r )  - iQs]) w = 0 ,  ( 7  1 

where w = y + i z .  
exponentially growing o r  decaying solutions would generally r e su l t  f o r  
a given set of system parameters. I n  the  special  case tha t  ( Q S / C s I 2  = 
Ks + %, a sinusoidal solution i s  obtained with frequency Bo = Qs/Cs. 

To see t h i s ,  consider the character is t ic  equation f o r  w = exp ( p t ) :  

I f  t h i s  equation were a l so  linear (6 = 0 ) ,  then 

5 
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p2 + Csp + [Ks + % - iQs l  = 0 

p = -cs/2 2 q 4  - Ks - % + iQsl 3 

- - -cs/2 2 K 2 / 4  - (Qs/Cs)  + iQsl 4 
S 

= -Cs/2 + iI iCs/2 - Qs/CsI 

= -c S - iQs /Cs ,  i Q s / C s .  

In the nonlinear, homogeneous problem, KB is  replaced by % ( I  - U r ) ;  hence, 
if r is  a constant, then there is  a wide spectrum of r fo r  which ( Q  /C ) 2  

may be Ks + % ( I  - Wr); i . e . ,  i f  
s s  

Ks ( Q  s s  /C 1 2 <  = Ks + 5, ( 8  1 

then there i s  a constant value of r (with r > 6) fo r  which ( Q  / C S I 2  
Ks + % (1 - 6 / r ) .  
frequency by Bo = Qs/Cs. 

frequency. 

( 2  

= 
S 

This value of r i s  denoted by a and the corresponding 

Thus, whenever inequality ( 8  ) i s  s a t i s f i e d ,  equations ( 1 ) - 
with u = 0 have steady-state solutions y = a cos ( B o t )  and z = a sin ( B o t ) .  
Notice tha t  B O  = Qs/Cs C = (Ks + = W O ,  the dimensional na tura l  

This frequency i s  labeled the nonlinear natural  

frequency of the l inear  system. 
nonhomogeneous problem, it  is  necessary t o  be aware of these three 
dimensional frequencies: 

Thus, in considering the general 

BO - the  nonlinear natural  frequency, 
wo - the  natural  frequency, 
w - the  driving frequency. 

It w i l l  be shown in the next section tha t  the  nonlinear frequency B which 
may appear in a s table  solution of the non-homogeneous version of equation 
( 6 ) always l i e s  between BO and wo. 

the nonlinear natural  frequency: 

where K = A + k (1 - A/a) - iB and f(W) = kA[l/lWI - l/a]W/&. 

One f i n a l  rearrangement o f  equation ( 5  

W" + CW' + KW = &f(W) + E@2exp(i@r) 

i s  made here t o  emphasize 

( 9  1 

2.4 METHOD OF MULTIPLE SCALES 

This section deals with formal, singular asymptotic expansions of the 
Je f f co t t  equations as writ ten i n  equation ( 9 ) .  A straight-forward 

6 
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asymptotic expansion i s  not general enough fo r  th i s  problem since it 
always leads t o  a zero-order approximation of the form: 

W = M exp(iPoT1 + N exp(i4T) 
fo r  constant values of M and N .  

suggest t h a t  one should replace B O T  by 8( T) and constant M by function M( T) . 
In  considering a Taylor series expansion of 6: r) , one can ignore the 

constaat term (or  a l ternat ively,  assume t h a t  it i s  grouped with the 
coeff ic ient  M( T) ) . 
 bo^. This i s  what one obtains from the straight-forward expansion. 

Typical singular asymptotic expansions 

Then the leading term of the Taylor s e r i e s  should be 

One method, the method of averaging, i s  appropriate f o r  the  Je f f co t t  

W = M ( T )  exp(iB(T)> + N exp(i4.c). 
equations since it begins with the assumption tha t  

Another method, multiple scales, is  a l so  appropriate because one can 
envision the action of the ro tor  being based on two d i f fe ren t  time scales .  
The r e s u l t s  are ident ica l  f o r  the two methods. 

Instead of one time scale  'I, assume the problem depends on many 
time scales:  

T o  = T, T i  = ET, T 2  = E ~ T ,  . . . 
Henceforth, only T O  and T 1  a r e  used. 
W o ( T 0 ,  T I )  + EWl(TO, T I )  + . . . Equation ( 9 )  becomes a p a r t i a l  differen- 
t i a l  equation since 

and (d2/dr2)  = ( D o  +  ED^)^. 
Thus, one f inds 

Let W ( T )  = W(To, T I )  = 

d/dT = (a/aTo)(dTo/dT) +&(a/aTl)(dTi/dT) = Do +  ED^ 

( D o  + ED1)2(Wo + € W 1 +  . . .) + C ( D 0  +  ED^) ( W o  + EW1 + . . .) 

+ K ( W O  + & W 1  + . . .) = € f ( W o  + E W ~  + . . .) + E+2exp(i4To). (10) 

E': D o 2 W o  + C D O W O  + K W ~  = E$2exp(i+To). (11) 

Equating l i k e  powers of E yields  

This is  a l i nea r  problem with th i s  steady-state solut ion 

where N = E42/(-+2 + i C @  +K) and M = M(T1). To determine M one must 
examine the e-order problem and choose M t o  eliminate secular terms; 
see Nayfeh [ 71 : 

W O  = M exp(iBoTo) + N exp(i4To) 

E l :  D o 2 V 1  + CW1 + K w 1  = -2DoDiWo- CDlWo + f(W0). 

7 



“With V = k 4 ~ ,  the right-hand side of the last equation becomes 
-2iBoM’exp(iBoTo) - CM1exp(i130To) 
+ V(l/lWo I - 1) [M exp(iB0To) + N exp(i$To)l 

where IWO~ = (IM12 + INI2 + %h exp[i($ - B O )  TO] + exp[i(Bo -$)TO]) + . 
To aviod secular terms one requires that the collective coefficient of 
exp(iBoT0) be zero. Although an anlytic solution of the differential 
equation for M(T1) has not been found, one can qualitatively assess M 
based on a similar problem (van der Polls equation) and specific numerical 
results (presented below) . 

M(T1) = @(TI) exp[i&Tl)I. Thus, 

or, assuming @(TI) is analytic near t = 0, Wo = p(Tl) exp[i(Bo+ s B 1 ) ~  + . . .I 
+ N exp(i$T). 
not BO but f3 = BO + cf31+ . . . ; however, 8 must reduce to Bo when E$* = 0. 
Consequently, the frequency y = 8 -Bo that appears in the expression for IWo I 
should be considered as y = Cp - f3. 
and W o / l W o  I shows all frequencies ny+B, for n = 0, 1, . . . 
that M has a complex Fourier series of the form: 

Since M(T1) is complex, it may be written as 

W O  = d T 1 )  exp[iBOTo + i$(T1)1 + N exp(i$To) 
A 

Thus the fundamental frequency of the nonlinear problem is 

Then I /  IWo I shows all frequencies ny 
This suggest 

Another factor of M must also be included since numerical examples 
show that ME0 if ECp2 is greater than some fixed value. 
to the behavior of the van der Pol oscillator; see [71. 

This is similar 
One possible 

where 
T- 

form of M would include a factor of the form F = 1/[1 + exp(-qT1)] 
q = q(ECp2>. This would imply that F+l as T- when qL 0 and F-tO as 
when q C 0. Thus, M looks like: 

00 
1/ [1  + exp(-nTl)] sn exp(inyT1). 

n=-w 

L 

i=l 

PSD plots of R show the frequencies ny. 
For the case of multiple forcing functions, C Fi($i) exp(i$ 

one defines yi = 
of the solution of equation ( 6  

$i - B.  Then the zeroth-order asymptotic approximation 
will contain L terms to account for the 

a 



L forcing frequencies, 
i n  W O  i s  replaced by N,exp(i+lTo) t . . . + NLexp(i+LTo). 

M of the nonlinear frequency f3 w i l l  now contain the Fourier fac tor  

+i, i = 1 ,  2 ,  . . ., L. Thus, the term N exp(i+To) 
The coeff ic ient  

C S exp(iyTl) v v  
where 

v from --a3 t o  +-a3 with v = nl + . . . t. 
magnitude coeff ic ients ,  S 

y = nlyl + . . . + t y L  and the summation is  taken over the integer 

Typical examples show signif icant  

only for v = 0, + I ,  -1, +2, -2. 

Figures 1 and 2 show typical  numerical solutions which a re  obtained 
v' 

using Runge-Kutta fourth order on equations ( 1 ) and ( 2 1. 
constants used a re  these: 1-1 = 0, m =  1 lb .  -  in., Cs = 240 l b .  - s . / in . ,  

K = O . ,  % = 1,305,000 lb . / in . ,  Qs = 200,000 lb . / in . ,  6 = .0000285 in., and 

w = 500 Hertz  = 1OOO.rr rad./s. 
in .  
Bo f o r  the  a-frequency. 

have these values: 
+ = 6 / 5 .  

Figures 1 and 2 show changes in the  solution Y vs. Z as E assumes the 
values 100n/(1000.rr)2 a f o r  n = 0, 1 ,  . . ., 7. The graphs a re  plot ted f o r  
.2 C t S .5s. The i n i t i a l  c i r c l e  ( fo r  E = 0)  opens in to  an annular region, 
which becomes larger  and thicker  as E increases unt i l  a ( t r ans i t i on )  value 
of E occurs and the coefficient of exp(i6.c) becomes zero. 
W = N exp( i+r ) ,  a c i r c l e  of radius IN1 . 
t i on  value, the solution remains a c i r c l e  (Figure 2.d) with radius 
IN1 = (E+2/(-+2 + i C +  + k(1 - A / l N \ )  - = ) I .  

Figure  3, a typ ica l  f u l l  PSD plot,  i s  the case E = 4/10,000.rr2a. 
shown earler, one expects frequencies of w and 
harmonics of ny+B where y = w -B and n = 1,  2 ,  . . . Thus, with 6 = 150 
Hertz, and w = 500 Hertz ,  one predicts t ha t  the PSD p lo t  w i l l  exhibit  peaks 
a t  150, 200, 500, 550, 850, 900, . . . Hertz .  Figure 3 confirms these 
predictions.  

The system 

S 

Thus, BO = 833.33 rad./s.  and a = .000060915 

With these choices, the constants of t h i s  equation 
The system is  made nondimensional using a f o r  the  g-displacement and 

WI1 + CW' + [ k ( l  - A / l W ( )  - iB]W = E+2exp(i$r) 
C = .288, k = 1.8792, A = .467865, B = .288, and 

Thus, 
As E increases beyond t h i s  t rans i -  

A s  
t o  appear, as w e l l  as 

9 
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3. CIRCLE OR ANNULUS 

This section presents two theorems which provide analytic expressions 
that  allow one to  determine a pr ior i  whether a solutionis geometry t r i l l  be 
a c i r c l e  o r  an annulus. 

In  t h i s  section we consider the  Je f fco t t  equations without s ide force, 
Numerical examples are  also included. 

via.  
yl' + cy1 + qy + Bx = Fcos@~ 

where F = E@', r = (y2 + z2) ', @ > 0, E '0, q = A + k(1 - A r-') i f  

r 2 A ,  and q = A if r 
can write these equations as 

Z" + C Z ~  - By + qz = F s i n @ ~ ,  

A .  I n  polar  form, and assuming tha t  r = A ,  we 

w" + cw' + {A - iB + k - k A / I w l l w  = E@'exp (i@.r) a (12) 

@', and F + M2E2 +$"E2 - k2A2. Let M = A  + k - 4' 
B - $C 

We have : 
Theorem 1. 
solution of the form w = r exp(i4.r + i$o) ,  
the following conditions are sat isf ied:  

and e i ther  

Assume $c - B # 0.  Then the d i f f e ren t i a l  equation (12) has a 
r > A ,  $10 1 0 ,  if and only i f  

F 1 0  (13) 

(14)  AM + $ ~ ( F ) * s  E ( M ~  + $4) 

and 

or 

and ZA (kAM -42 (F)*)@' 

If (131, (14) and (15) are sat isf ied,  then, setting v = kAM +@'(F)' 

we have $0 = arc  sin v (18) and r = E$2~/(B - $c) (19).  
I f  (131, (16) and (17) are  sat isf ied,  then (18) and (19)  hold with 

E ( M ~  + $ 4 )  ' 

10 
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Proof: 
r2A. 

-$'r + i$ rc  + {A - i B  + k - kAr-') r = E$2exp(i$o) 
v = sin$oy and separating r e a l  and imaginary par t s ,  we  obtain 

and 

Assume ( 1 2 )  has a solution of the form w = r exp(i4.c + i @ o )  with 

Since w'  = i @ w  and w" = - $ J ~ W ,  replacing i n  (12) we  obtain 

Se t t ing  u = cos@o , 

(@c - B ) r  = -E$% (20) 

-@r + ( A  + k ) r  - kA = E(12u, i .e. 
( A  + k - $')r - kA = E $ 2 ~  

Case 1: 
~ c - B Z O  

From (20) we know tha t  r = E$2v ; 

whence from (21) 
B - $C 

A + k - $ 2  E$% - kA = E$'-. 
B - $C 

Set t ing  

o2 Y 

A + k - $ 2  
B - $C M =  

we have 
MEv-kA 

Squaring: 
M2E2v2 + k2A2 - 2kAMEv = E2$4 - E 2 4 2  $ v , 

i .e .  
(M2 + $4) E2v2 - 2kAMEv + (k2A2 - E'$") = 0. 

Set t ing  
. 

and 
D = K2A2M2 - (M2 + $4)(k2A2 - E2$ '+)  

F = M2E2 + $4E2 - k2A2 

D = $4F, 
we readi ly  see tha t  

kAM t $2d'F E v  = , i .e .  
M2 + 44 

or 

11 
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and therefore 
F L O .  

Since \ V I  I 1 ,  it i s  also c lear  that 
e i the r  

kAM + $2fiI E(M2 + $4) 

IkM - $ ' f l I  I E(M2 + c $ ~ ) .  

Moreover, from (22) w e  know tha t  

o r  

(33) 

where v i s  given by (28) o r  (29) .  
Conversely, l e t  M and F be defined by (23)  and (27) respectively,  and 

assume tha t  (30),  (33) and e i ther  (31 ) or  (32) are sa t i s f i ed .  
t ha t  there i s  a solution of (12) of the  form w = r exp(i$.c + i$o) with r ' L A .  
To show t h i s ,  assume fo r  instance tha t  (31 ) i s  sa t i s f i ed ,  and let  v be 
defined by (28) .  
Then 

We claim 

I V l S 1 Y  (34 1 
and v s a t i s f i e s  (26) .  
the  square root on both sides (24) follows. Then 
c lear ly  (20) i s  sa t i s f ied .  
such tha t  sin40 = v and COS$O = m. Sett ing u= my we see tha t  (21 ) 
is  sa t i s f i ed .  
Se t t ing  

Theorem 2. 

solution of the form w =  rexp(i$T + i$o) ,  r 2 A,  $0 2 0, i f  and only i f  
the following conditions are sa t i s f ied :  

Rearranging terms we obtain (25 ) , whence taking 
Let r be given by (22) .  

Moreover, i n  view of (23) there  i s  a $0 1 0 

Moreover, from (33) we know tha t  r 1 A .  

w = r expii4.l: + i$o 1 the conclusion readily follows. Q. E.  D .  
Assume $c - B = 0. Then the d i f f e ren t i a l  equation (1 2 ) has a 

(35 ) 

(36 1 

A + k - $2 = 0 

or  
A + k - (9' # 0 

and e i the r  

? A  E$' + kA 

A + k -  4' 

12 
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Moreover : 

( a )  If (35) is  s a t i s f i e d  then r L A i s  a rb i t ra ry ,  $o  = (2n + l ) r ,  
n = 0,  1, 2, . . . , and kA = E$2 

(b)  If (36) and (37) a re  sa t i s f ied  then r = 

a n d 0 0 = n l r ,  n = 0 ,  1 ,  2 ,  . . . , 
If (36) and (38) a re  sa t i s f ied  then r = 

and 00 = nr, n = 0, 1 ,  2, . . . 

E$' + kA 

A + k - $ 2  

-E$2 + kA ( c )  
A + k - @ 2  

Proof: 

Since $c - B = 0,  (20) implies t ha t  v = 0 ,  and therefore u = ? I .  
I f  (35) is  sa t i s f i ed ,  w e  conclude from (21) t h a t  kA = E+2 and u = -1. 

Thus $0 = (2n + 1 )r, n = 0, 1,  2 ,  . . . and r i s  a rb i t ra ry .  
assume tha t  (35) i s  sa t i s f i ed ,  

and kA = E$2. 
and therefore t h a t  (39) i s  a solution of (12) .  
Assume now t h a t  (36) is  s a t i s f i e d . .  Then (21) yields  

Conversely, 

w =  rexp(i+l:  + (2n + l ) n i ) ,  (39) 
Then we readi ly  conclude t h a t  (20) and (21 ) are  sa t i s f i ed ,  

E$2 + kA 
A + k - 0 2  

r =  

provided t h a t  (37) holds, o r  

(40 

(41 1 -E$2 + kA r =  
A + k - $ 2 '  

provided t h a t  (38) holds. 
n = 0 ,  1 ,  2,  . . . 
Conversely, assume tha t  (36) is  sa t i s f ied ,  and l e t  r be given by (40)  (if 
(37) holds),  o r  by (41)  ( i f  (38) holds), and l e t  $0 = nr, n = 0 ,  1 ,  2,  . . . 
We then readi ly  see tha t  (20) and (21 ) are  sa t i s f i ed ,  and therefore tha t  
w = c exp(i0.r + inr) (n = 0, 1, 2, . . .) is  a solut ion of (12). Q. E. D. 

Numerical examples are  now presented t o  i l l u s t r a t e  the r e su l t s  of 

Moreover, it is  c lear  t h a t  $0 = nr, 

these theorems. Consider these given parameters: 

. 



m = I  

Ks = 0 

% = 1,305,000 

Qs = 200,000 

Cs = 240 

u = .0000285 

6 = .OOOOO285 
and use the  nondimensionalizing frequency 0 = 
a l iz ing  displacement g = u. 
as  
increments of 0.1. 

Runge-Kutta solutions. 
f o r  a l l  values of $ except 0 = 0.1. 
solution t o  be an annulus over an interval  of 
The theorems, however, can f ind t h i s  in te rva l  i n  much less (computer) 
time and show tha t  the solution i s  an annulus f o r  0 c $ c 0.11, 

Table 2 uses the  same parameters as  Table 1 except that 6 = .0000285; 

and the nondimension- 
S 

Table 1 summarizes a frequency-response curve 
4, the  nondimensional forcing frequency, var ies  from 0.0 t o  2.0 i n  

The corresponding values of R a re  obtained from the 
From Table 1 one sees tha t  the solution i s  a c i r c l e  

Generally speaking, one expects the 
4, not j u s t  a t  one point.  

i .e. ,  6 = u instead of 6 = . lu  ( in  Table I ) .  I n  t h i s  case an annulus 
appears fo r  $ = . I ,  .2,  .3 and for $ = 1.0 t o  2.0. Figures 4,  5, and 6 
are the  Runge-Kutta solutions for  4 = .3, .9, and 1.5, respectively. 
From the theorems one has tha t  the solution i s  an annulus for  OC4 I .31 
and f o r  1 .O I$ I 2.0. 

delimits the 
Table 3 changes only the 6 i n  Tables 1 and 2 t o  6 = IOU. The theorem 

$-intervals fo r  an annulus t o  be 0 I $ 1.61 and .84 5 $ I 2.0. 

These examples lead one t o  abandon repeatedly p lo t t i ng  Runge-Kutta 
solutions i n  order t o  determine intervals of annuli. 
the  inequal i t ies  of the  theorems t o  determine these in te rva ls  thereby 
allowing one's focus t o  s h i f t  t o  variations in the r a t i o  

Table 4 summarizes seven such r a t io s  fo r  the same data  of Tables 

Rather, one employs 

6/u. 

I ,  2, and 3. 
Tables, are included here along with four other values, 6/u = 0.5,  0 .9 ,  

2.0, and 5.0, t o  give a smoother picture of how the frequency-response 
curves depend on t h i s  r a t io .  

The three cases, 6/u = 0.1 , I . O ,  and 10.0 of the  preceeding 

One should bear i n  mind tha t  each description 
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( l i s t e d  as "circle/annulus regions") f o r  a fixed 6/u r a t i o  is  i tself  a 
frequency-response curve. 
these seven curves i s  tha t  there  is only one t r ans i t i on  point,  from annulus 
t o  c i r c l e ,  i n  the  curves for  6/u c 1.0 (excluding the i n i t i a l  c i r c l e  a t  

+ = 0 ) .  
c i r c l e  and another t rans i t ion  point from c i r c l e  back t o  annulus. 

Figure 7 i s  the frequency response curve of Table 4 with 6 = u. 
The regions where the response i s  an annulus a re  shown i n  the f igure with 

the outer radius of the annulus only. 
Tables 5 and 6 are the same as Table 4 except t ha t  the bearing 

s t i f f n e s s ,  %, i s  changed. 
close t o  an unstable solution. 
bearing. 
response curves of Table 4 are  not a typical .  

The most in te res t ing  feature  seen by comparing 

But f o r  6/u 2 1 .O there is a t r ans i t i on  point from annulus t o  

Table 5 uses % = 700,000, a value tha t  i s  
Table 6 uses % = 10,000,000, a very s t i f f  

These tables  are  included t o  i l l u s t r a t e  t ha t  the frequency- 
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4. ROTORS WITH MASS IMBALANCE AND SIDE FORCE 

Thus f a r ,  the analysis has concentrated on the Jef fco t t  equations 
containing only one forcing function, which i s  mass imbalance i n  the 

numerical examples, but can be any sinusoidal force,  F exp(iwt). 

by examining the most improtant case i n  applications, viz . ,  mass imbalance 
plus s ide force. 
constant i n  the y-direction only. 
nondimensional, complex form of the Jef fco t t  equations with s ide force 
and mass imbalance: 

We begin our i n i t i a l  investigation in to  multiple forcing functions 

The s ide force appears i n  the Jef fco t t  equations as a 
I n  general, one has the  following 

W1' + CW' + ( A  + k(1 - Am) - i B )  W = S + E$2exp(i$T) 
where W = Y + i Z .  

s iona l  s ide force is  S = Sf/mass/a2/g. 

t o  be the  sum of two par ts :  
force S and (ii.) 
another way, the solution of the  l inear problem is  a sinusoidal sh i f ted  by 
a constant ( the  side force contribution). 

If the dimensional side force i s ,  Sf ,  then the nondimen- 

In  the corresponding l i nea r  problem ( A  = O), one finds the solution 
a constant, resu l t ing  from the s ide (i.) 

a sinusoidal, resul t ing from the mass imbalance. Said 

I n  an analogous manner, one predicts the addition of s ide force t o  
the  nonlinear problem w i l l  cause a constant s h i f t  i n  the solution of  the 

nonlinear problem without side force. There are ,  however, s l i gh t  modifi- 
cations tha t  must be made since one i s  dealing with a nonlinear problem 
and the principle of superposition no longer holds exactly. 
a c i r c l e  o r  c i rcular  annulus w i l l  be changed in to  an e l l i p se  o r  an 
e l l i p t i c a l  annulus, but otherwise no fundamentally different  curves should 
appear. 

Report [ 31 , one sees tha t  t h i s  i s  the case; i .e. ,  regardless of whether 
one has A-motion, B-motion, o r  C-motion, the t ra jec tory  of the  solution 

of t he  Jef fco t t  equations is  a shifted e l l i p se  o r  a sh i f ted  e l l i p t i c a l  
annulus. 

For example, 

Upon examining the numerous resul ts  of the Control Dynamics Company 

Detailed r e su l t s  of the CDC Report [71 are now considered. 
CDC-Figure 2.3a: A-motion within deadband. In  t h i s  case (within 

deadband), the Jeffcot t  equations are l inear  and the  t ra jec tory  i s  a c i r c l e  
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t ha t  has been shif ted from the origin by a fixed amount i n  the y and z 

direct ions.  
i n  both the y and z directions even though the Jef fco t t  equations contain 
a s ide force i n  the y direct ion only. 
the  two equations. 

c i r c l e  becomes a sh i f ted  e l l i p s e  since the motion includes the nonlinear 
region outside the deadband. 
and I 1  reproduce these results. 

This i s  exactly as  expected. Note tha t  the solut ion sh i f t s  

This is  caused by the  coupling of 
Figures 8 and 9 reproduce these r e su l t s .  

CDC-Figure 2.4a: A-motion overlapping deadband. Now the shif ted 

S t i l l  t h i s  i s  what i s  expected. Figures 10 

CDC-Figure 2.5a: A-motion outside deadband. Again a sh i f t ed  e l l i p se .  
CDC-Figure 2.6a: A-motion outside deadband. Again a sh i f ted  e l l i p se .  
CDC-Figure 2.7a: A-motion overlapping deadband. Again a sh i f ted  

CDC-Figure 2.8a: A-motion overlapping deadband. Again a sh i f ted  

CDC-Figure 2.9a: B-motion overlapping deadband. A sh i f t ed  e l l i p t i c a l  

e l l i p se .  Figures 12 and 13 reproduce these resu l t s .  

e l l i p se .  

annulus. 
observed from numerical r e su l t s  as B-motion. It i s  now understood t h a t  
t h i s  l terrat ic t l  motion is  actual ly  an annulus and is  caused by including 
contributions from the left-hand side of the Jef fco t t  equations ( the  
homogeneous solut ion) .  
were omitted, a c i rcu lar ,  annular orb i t  would r e su l t .  I n  the corresponding 
PSD p l o t  of CDC-Figure 2.9b, one sees the subsyncronous frequency appear a t  
half  the  driving frequency. 
cross-coupling r a t i o  was chosen t o  be exactly one half  the  driving 
frequency. Figures 14  and 15 reproduce these resu l t s .  

deadband. Again a shif ted e l l i p t i c a l  annulus. The llradiusll of the 
r e su l t i ng  e l l i p t i c a l  annulus appears t o  be a d i rec t  r e s u l t  of the mass 
imbalance, whereas the center of the e l l i p t i c a l  annulus is  caused by the  
s ide  force. 
comparison with the IIradius" of the e l l i p t i c a l  annulus. This suggests t ha t  

the  mass imbalance is  much larger  than the s ide force f o r  t h i s  case. 

according t o  the key, th i s  i s  the  case of the largest  mass imbalance and 

the  second smallest side force considered. 

The earlier investigators apparently labeled the annular regions 

I f  the side force (causing a s h i f t  of the center) 

This is no surpr ise  since the damping and 

CDC-Figure 2.10a: B-motion surrounding the or igin and overlapping 

Therefore, in t h i s  case the center i s  close t o  the  o r ig in  in 

Indeed, 



CDC-Figure 2.11a: B-motion surrounding deadband. Again an e l l i p t i c a l  

CDC-Figure 2.12a: C-motion surrounding deadband. The or ig ina l  invest i -  
annulus. 

gators defined C-motion t o  be a shifted e l l i p t i c  annulus motion tha t  completely 
surrounds the deadband. 
between B-motion and C-motion. 
case: zlotion caused by s ide force, mass imbalance and a contribution from 
the homogeneous equation. It is A-motion, where there i s  no contribution 
from the homogeneous equation tha t  is d i f fe ren t .  
e l l i p se ,  whereas B-motion and C-motion a re  sh i f ted  e l l i p t i c a l  annuli. 
is  fur ther  ver i f ied  by examining the  PSDs of the B-motions and C-motions. 
In  B- o r  C-motion one sees a peak occuring a t  the subsynchronous frequency 
which is  exactly half  the driving frequency. 

e l l i p t i c a l  annulus. 
it is  hard t o  see in the graph. 
by examining the corresponding PSD. 
major contribution is a t  the subsynchronous frequency ra ther  than the  
driving frequency. 
parameters. 

By our analysis there  i s  no need t o  distinguish 
The two a re  resu l t ing  from the same analyt ic  

A-motion is a sh i f ted  
This 

CDC-Figure 2.13a: C-motion surrounding deadband. Again a sh i f t ed  
Here the thiclmess of the annulus i s  so  small t ha t  

But one can see tha t  it i s  actual ly  there  
Also from the PSD one sees t h a t  the 

This i s  because of the comparative s izes  of the three 

CDC-Figure 2.14a: C-motion touching deadband. Again a sh i f ted  
e l l i p t i c a l  annulus. It i s  r ea l ly  B-motion. 
i n  minute compared with i t s  llradiustl. 
r e su l t s .  

The thickness of the annulus 
Figures  16 and 17 reproduce these 



5. MULTIPLE EXCITATIONS 

I n  t h i s  sect ion the generalized, complex Jef fco t t  equation ( 6 )  i s  
considered. 
the nonlinear J e f f co t t  equation is being forced by two functions, 

F1 exp(i+lT) and F Z  exp(i4zT). 

frequencies and 8, as i n  the  case of the s ingle  forcing function, i s  the 

nonlinear frequency resu l t ing  from the  homogeneous port ion of the  Je f f co t t  
equation; i .e. ,  B = Bo + sB1 + . . . . 

The examples deal  with the  case L = 2 i n  equation (6 )  ; i . e . ,  

Define ~1 = 41 - B and y2 = $2 - B where $1 and $2 are the  two forcing 

Certainly one expects t o  see the  frequencies 41 and + z  i n  the  response's 
PSD. 
and n l  + n2 = v with integer v ranging from --oo t o  +a. 
n l  + n2 = 0 and as ordered pa i r s  (n l ,  nz )  = ( 0 ,  O ) ,  (1 ,  - I ) ,  (-1, I), 
( 2 ,  -2), (-2, 2 ) ,  . . . . Hence, v = 0 corresponds t o  y = 0 ,  
2141 - $21, 3141 - 4 2 1 ,  . . . For v = 1, (nl, n2) = (0, A > ,  (1 ,  01, 
(-1, 21, (2 ,  - I ) ,  (-2, 31, (3, -2) ,  . . . and correspondingly y = $ I~ -B ,  
4 1  -6, 242 - 41 -B, 342 - 241 - 6, 341 - 242 -8, . . . . A s  in the  
s ingle  forcing function case, many of these frequencies may not appear 
i n  the  solut ion 's  PSD, depending upon the r e l a t i v e  magnitudes of the 
coef f ic ien ts  of the  homogeneous equation and the forcing magnitudes F, 

But a l so  one sees a l l  frequencies Iy 261 where y = nlyl + nzyz 
Thus, fo r  v = 0 ,  

- 4 z ] ,  

and F2.  

Considered now are three examples which use the same homogeneous 
coef f ic ien ts  as the  example in Subsection 2.4; i .e . ,  m = 1, Cs = 240, 

Ks - - 0 ,  % = 1,305,000, Q = 200,000 and 8 = 0.0000285. Again Bo = 833.3 
S 

and B = Bo+ E B ~  + . . . . 
The first example uses F1 = 50, $1 = 300 Ha., FZ = 350 and $ z  = 500 Ha. 

The response i s  shown in  Figure 18 and the  corresponding PSD of y appears 
in Figure 19. 
Certainly, the  last  two are no surprise. 
again corresponding t o  the  B, the homogeneous solution. 
a t  60 Hz. and 220 Ha. can be accounted f o r  with 

The three la rges t  peaks occur a t  155 Hz., 300 Hz., and 500 Hz. 

Secondary peaks 
Likewise, t he  155 Ha. peak is  

3yl - 8 ~ 2  + B = 3(340) - 8(140) + 160 = 60 
y1 - 2 ~ 2  + B = 340 - 2(140) = 220. 

Minor peaks a t  20 Hz., 340 Hz., 360 Ha. and 420 Hz. can a l so  be included since 



O(y1) - YZ + B = -140 + 160 = 20 
3(yl) - 6(~2) + B = 3(340) - 6(140) + 160 = 340 
y1 - y2 + B = 340 - 140 + 160 = 360 
2yl - 3Y2 + B = 2(340) - 3(140) + 160 = 420. 
The second example replaces F1 and F2 of the previous exercise with 

F1 = 200 = F P .  

display the solution and i ts  PSD, respectively. 
the peak, a t  100 Ha., other than the mandatory peaks a t  300 Ha. and 500 Ha. 
But t h i s  can be accounted f o r  as 2(300) - 500, or  with B = 150 Ha., one has 

Again $1 = 300 Hz. and $2 = 500 Hz. Figures 20 and 21 
The PSD exhibi ts  only 

-y1 + 2Y2 + 8 = -350 + 2(150) + 150 = 100. 
Finally,  the replacement of F1 with 350 and F2 with 50 leads t o  the 

solution which is  drawn i n  Figure 22 and t o  i t s  associated PSD in Figure  

23. The explanation of th i s  example i s  analagous t o  the previous example. 
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6. STABILITY 

This Section contains two theorems, one related to  the c r i t i c a l  points 
of a f i rs t  order system of dimension six and the other re la ted t o  bounds of 
the solution of the same system. The Section concludes with examples of 
bounded and unbounded solutions, which OCCUT in corresponding regions of 
the l inear  problem. 
In  t h i s  section we consider the  Jeffcott  equations with s ide force, viz.  
yff + Cyt + qy + Bz = Fcos$r + D 
a" + Czl - By + qa = Fsin$T, 
where F = 
i f  r 1 A, and q = A i f  r c A .  
Theorem 1.  

M = [ F 2  - (u3 + Cuz+ qul + Bu, - D)2]3, and 

r = (y2 + z2)' and q = A + k(1 - 

= y ' ,  u3 = y", u4 = 
We s t a r t  with 

L e t  u1 = y, u2 

N = [F2 1 (Ug + CUg- Bul + qU4) 2 3  ] . 
Then every solution of(42)  is 

ui = UP 

u; = u3 

u: = -q'ul- qu, - cu3 

ut = 
u: = 
u:, = BU2 -q'ul+ - 

- 

Moreover, no solution of (42) 
Proof From the f i r s t  of the 
COS$T = (y" + Cy' + 9 ; ~  + BZ - 

a solution of the autonomous system 

(43) 

pas.ses through a c r i t i c a l  point of (43 ) .  
equations ( 42) we have 
D ) / F .  Thus 

4n = Arcos[(yfl + Cy1 + sy + Bz - D)/F]. Differentiating we see tha t  
9 = -[F - (y" + Cy' + qy + B z ) ~ ] - '  [ y t r r  + cy" + qy' + Bzf + q'y1, 
o r  
$ = -M-' (u; + CU, + qu, + q'u, + Bus) , whence 

Similarly, from the second of the equations of (42) we see tha t  
sin$?: = (zf f  + Czl - By + qz)/F, or 
$r = Arcsin[ ( a" + Czt - By + qz) /F] , whence we readily conclude tha t  

+ N$. 
Combining ( 44), ( 45) , and the deflnition of  the variables ui, ( 43) readily 
follows. 
u2 = u3 = us = 
Assume the pa i r  (UI, u4) is a solution of ( 42) ( i . e .  u1 = y, u4 = 0). 

u: = -q'U1 - qU2 - CU, - Bu, - M$. (44)  

U: = Bu, - q'U, - QU, - CU, ( 45) 

We now turn our attention t o  the c r i t i c a l  points. By def ini t ion,  
0 ,  and therefore -q'ul - M$ = 0 ,  and -q'u4 + N$ = 0. (46) 
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In view of the definitions of M and N, we readily conclude that 
M = Flcos$tl and N = Flsin+tI. 
we infer that M = N = 0. 
Assume now that r 2 A .  
rf = (y2 + z2 ) - * ( yy f  + z z f ) .  

we conclude that rf = 0, and therefore qf = 0, and we have a contradiction, 
as in the first case. Q. E. D. 

p = 0 if IWl c A and 

Assume r A ;  then qt = 0, and from (46) 
Since M2 + N 2  = F2 # 0, we have a contradiction. 

Then q1 = kAR-'Rf. Since r = (y2 + z 2 )  + , 
Since y f  = u2 = 0, and z f  = us = 0, 

p = 1 if IWl 1 A .  Then the Jeffcott equations 
are equivalent to 
W" + CWf + (A - iB)W + kpW(1 - A/lWl) = Fexp(i+t) + D, (47) 
where W = y + iz. 
Theorem 2. 
v" + Cvf + ( A  iB + k)v = 0, let X = a + ib, 
and assume that 
IWl > A if to 
Then there exist constants MI, MP, M3 such that if 
to e t C tl, IWl I MI + M2 exp(at) + M3 exp[-(a + c)t]. 
In particular if -c S a s  0, W will be bounded thereon. 
Proof of Theorem 2: 
W1' + CWf + GW - pkW/lWl = Fexp(i4t) + D. 
Let W = uv, where VI? + cvf + Gv = 0. 
ut% + 2ufvf + uv1' + cutv + cuvf + Guv - pkW/IWI = Fexp(i$t) + D, i.e. 

Assume v = exp(Xt) and X = a + ib; then ($9) becomes 
ut? + (21 + c) uf - pk(u/lul) exp ( -A + ib)t 

Multiplying by exp (2X + c)t we have 
[ut  exp(2A +c)t]I - pk(u/lul) exp (A + c + ib)t 

= F exp (io +A + c)t + D exp (X + c)t. 
Assume IW 12 A if t I to. 
uf exp (2X + c)t = 

We have: 
Let exp(At) be a solution of 

t C tl (,". 

L e t  G = A  - iE3 + kp. Then (47) can be written as 
(48) 

Then (48) is transformed into 

uT1v + (2vf + cv)uf - pkW/(WI = F exp(i$t) + D. (49) 

= F exp (it$ -X)t + D exp(-Xt) 

Integrating, we have 
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Multiplying by exp [-(2A + c ) t ]  we obtain: 
ut = k exp [-(2A + c > t ] /  

exp (i@ - A ) t  + [ D / ( A  + c ) ]  exp ( - A t )  + E exp [-(2A + c ) t ] .  
Thus , 
lul I 1. k exp [-2a + c ) t ] l t  exp (a + C I S  ds + IF / ( i$  + A + c) I exp ( -a t )  + 

1 D / ( A  + c) l  exp (-at)  + ]El exp [-(2a + c ) t ]  5 

K 1  e-(-at) + K 2  exp [-(2a + c ) t ] .  
Integrating, we conclude tha t  
(uI <, k3 exp ( -a t )  + K4 exp [-(2a + c ) t ]  + k5. 
IWl = Iu exp ( A t > \  I K 3  + K4 [ - ( a  + c ) t ]  + K5 exp ( a t ) ,  
whence the conclusion follows. Q. E.  D .  

From Theorem 2 we deduce that if -c I a SO, then no solution 
This does not preclude, 

t (u/lul) exp ( A  + c + ib )sds  + [ F / ( i @  + A + c ) ]  
t 0  

t o  

Thus, 

Remark: 
of the Jef fco t t  equations can diverge t o  in f in i ty .  
however, t he  poss ib i l i t y  of unbounded osc i l la tory  behavior , IW I could 
behave l i ke ,  for  example, lsintl exp ( t ) ,  as  t goes t o  in f in i ty .  The 

reason f o r  t h i s  is  tha t ,  i f  IWl c A f o r  some in te rva l  (tl, t 2 )  (wi th  tl > t o )  , 
and IWl 2 A f o r  t 2 t 2 ,  then f o r  t > t 2  the constants M I ,  M P ,  and M3 w i l l  
depend on W ( t 2 )  and F J ' ( t 2 ) .  

equations ( 6  = 0) corresponding t o  equations (1 ) and (2)  a re  these: 
As shown in Subsection 2.3 the  eigenvalues of the l inear  J e f f co t t  

X = -Cs/2 t 4(CS/2)' - (Ks + %) t iQs. 

Hence, the solutions a re  bounded if and only i f  Re( X) C 0 ; i . e . ,  
t iQs]C Cs/2. 

A similar r e su l t  is  obtained by considering the l i nea r  portion of the six 
f i rs t -order  equations of system (43) . 

Table 7 i s  a l i s t i n g  of values where X = 0 fo r  Cs = 150 and Cs = 240. 
These values a re  shown graphically in Figure  24 together with Cs = 100 and 
Cs = 300. 

corresponding choices fo r  K + % and Qs l i e  above the curve in question 

Re[/ (Cs/2)2 - (Ks + 

In a l l  four cases the l inear  solution is  bounded i f  t he  

S 
and unbounded below the curve. 

This Section concludes with four examples of the nonlinear Je f fco t t  
equation. Figure 25 i s  the solution of equations (1) and (2) with Cs = 240, 

= 200,000, Ks = 0, % = 650,000, w 

U = 400/w2. From Figure 24 this solut ion is  unbounded which agrees with 

Figure 25. 

= 500 Hz., 6 = .0000285, and 
QS 
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The second example i s  the same as the previous example except t h a t  
The corresponding l inear  solut ion ( 8  = 0)  from Figure 24 KB = 750,000. 

i s  bounded. F i g u r e  26 draws t h i s  solution. 
The last  two examples change only Cs t o  150 and % t o  3,500,000 and 

4,500,000 respectively.  From Figure 24 the  smaller % value w i l l  produce 
an unbounded linear solution while t he  la t te r  % value w i l l  produce a 
bounded linear solution. 
nonlinear problems. 

Figures 27 and 28 ver i fy  these r e s u l t s  f o r  the 
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7. CONCLUSIONS 

This report has developed new theory and examples fo r  the nonlinear 
Je f fco t t  equations i n  an attempt to  offer mathematical explanations t o  
observed phenomena. 
standing of vibrations induced i n  ro tors  by nonl inear i t ies  in the governing 
d i f f e ren t i a l  equations. 

To t h i s  end, a review of the analysis of a s ingle  forcing function 
driving the Jef fco t t  equations lead d i r ec t ly  t o  an examination of multiple 
forcing functions, in par t icu lar  those which are  caused by mass imbalance, 
s ide force, and rubbing. 
of a l l  three of these specif ic  forces and works w e l l  f o r  any number of 
forcing functions. 

The emphasis here has been on constructing an under- 

The theory presented herein i s  a generalization 

As was shown in Final Report [ 4 ] ,  a nonlinear frequency induced by 
the homogeneous portion of the Jeffcott  equations appears in the PSD of 
the solution and i s  a basis  fo r  harmonics, formed by the  difference between 
it and the  forcing frequency, also t o  arise. In  the case of two o r  more 

forcing functions, t h i s  nonlinear frequency again surfaces, along with a 
multitude of harmonics which are  composed of sums and differences of the  
nonlinear frequency and each of the forcing frequencies. 
report  i l l u s t r a t e  t h i s  analyt ic  resul t  fo r  the specif ic  case of mass 
imbalance and side force as w e l l  as  the general case of any two forcing 
frequencies. 

quantity in the sense tha t  for  some par t icu lar  problems it i s  pa r t  of the 
PSD of the  solution while in other problems it is  absent. Therefore, one 
of the  primary goals of t h i s  work has been t o  try t o  determine a p r i o r i  
f o r  a given set of constants i f  the  nonlinear frequency would actual ly  be 
a pa r t  of the  solution's PSD. Section 3 of t h i s  report  presented a set 
of inequal i t ies ,  based solely on the coeff ic ients  of the Jef fco t t  equations, 
which can make t h i s  decision. 

Examples in t h i s  

It was also shown in [ 4 ]  that the  nonlinear frequency is  an elusive 

The s t a b i l i t y  problem has continued t o  r e s i s t an t  analyt ic  expression. 
Even though the  Jef fco t t  equations were successfully transformed in to  a 
set of autonomous, f i rs t -order  d i f fe ren t ia l  equation fo r  which volumes of 
s t a b i l i t y  theory exist, it was also shown tha t  the c r i t i c a l  points of t h i s  
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. 

system, which are  the basis  of any s t a b i l i t y  an l y s i s ,  do not l i e  with 
Therefore, a region of the y-a plane which i s  physically in te res t ing .  

n 
it 

Some was necessary t o  deal only with boundedness r e s u l t s  of the  solution. 
new re su l t s  f o r  bounded solutions were displayed, and these lead one t o  
consider t ry ing  t o  prove the conjecture analyt ical ly  tha t  the  e f f ec t  of 
deadband on s t a b i l i t y  i s  tha t  of s tab i l iz ing .  This i s  seen immediately 
i n  the Jef fco t t  equations themselves where the only nonlinearity occurs 
i n  the form 1 - 6 / r  so tha t  if a solution attempts t o  grow without bound 
(r  becomes i n f i n i t e ) ,  then the nonlinearity approaches one and the problem 
becomes l inear .  This i s  again a boundedness r e s u l t ,  but it does h in t  a t  
s tab i l iza t ion .  

One of the most interesting features of t h i s  fascinat ing problem has 
t o  date not been considered. That i s  t h i s :  how i s  the solution affected 
by var ia t ions in the in i t ia l  conditions? Throughout the examples i n  t h i s  

Report and in the previous Final Report [ 4 ] ,  the  i n i t i a l  conditions were 
never changed. It was only in making comparisons of the theory presented 
herein with the r e s u l t s  of the Control Dynamics Company [3]  t ha t  differences 
i n  solutions was observed f o r  different  i n i t i a l  conditions. 
well-hown i n  elementary theory of d i f f e r e n t i a l  equations, t h a t  a change in  
the  i n i t i a l  conditions of a nonlinear d i f f e ren t i a l  equation can have pro- 
found e f f ec t s  on the equation's solution, the Jef fco t t  equation's behave so 
much l i k e  l i nea r  equations in a global sense tha t  t h i s  idea of varying the  

i n i t i a l  conditions had never occurred. It i s  believed t h a t  t h i s  behavior 
a f f ec t s  whether the nonlinear frequency appears in  a par t icu lar  solution, 
but not t ha t  a nonlinear frequency exists. Thus, the  fundamental r e su l t s  
of t h i s  Report are not invalid,  but ra ther  another aspect of the problem 
should be examined. 

While it i s  
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